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Abstract: Traditional NBA player evaluation metrics are 
based on scoring differential or some pace-adjusted linear 
combination of box score statistics like points, rebounds, 
assists, etc. These measures treat performances with the 
outcome of the game still in question (e.g. tie score with 
five minutes left) in exactly the same way as they treat per-
formances with the outcome virtually decided (e.g. when 
one team leads by 30 points with one minute left). Because 
they ignore the context in which players perform, these 
measures can result in misleading estimates of how play-
ers help their teams win. We instead use a win probability 
framework for evaluating the impact NBA players have on 
their teams’ chances of winning. We propose a Bayesian 
linear regression model to estimate an individual play-
er’s impact, after controlling for the other players on the 
court. We introduce several posterior summaries to derive 
rank-orderings of players within their team and across the 
league. This allows us to identify highly paid players with 
low impact relative to their teammates, as well as players 
whose high impact is not captured by existing metrics.

Keywords: Basketball; Bayesian shrinkage; lasso; win 
probability.

1  Introduction
Determining which National Basketball Association 
(NBA) players do the most to help their teams win games 
is perhaps the most natural question in basketball ana-
lytics. Traditionally, one quantifies the notion of helping 
teams win with a scoring statistic like points-per-game or 
true shooting percentage, a function of point differential 
like Adjusted Plus-Minus [see, e.g. Rosenbaum (2004), 
Ilardi and Barzilai (2008)] and variants thereof, or some 

combination of box score statistics and pace of play like 
the player efficiency rating (PER) of Hollinger (2004).

While these metrics are informative, we observe that 
they ignore the context in which players perform. As a 
result, they can artificially inflate the importance of per-
formance in low-leverage situations, when the outcome 
of the game is essentially decided, while simultaneously 
deflating the importance of high-leverage performance, 
when the final outcome is still in question. For instance, 
point differential-based metrics model the home team’s 
lead dropping from 5 points to 0 points in the last minute 
of the first half in exactly the same way that they model 
the home team’s lead dropping from 30 points to 25 
points in the last minute of the second half. In both of 
these scenarios, the home team’s point differential is –5 
points but, as we will see in Section 2.1, the home team’s 
chance of winning the game dropped from 72% to 56% in 
the first scenario while it remained constant at 100% in 
the second. We argue that a player’s performance in the 
second scenario has no impact on the final outcome and 
should therefore not be treated comparably to perfor-
mance in the first. We address this issue by proposing a 
win probability framework and linear regression model to 
estimate each player’s contribution to his team’s overall 
chance of winning games.

The use of win probability to evaluate the perfor-
mance of professional athletes dates back at least to Mills 
and Mills (1970), who evaluated Major League Baseball 
players. As Studeman (2004) observes, their Player Wins 
Average methodology has been re-introduced several 
times since, most notably as win probability added 
(WPA). To compute WPA, one starts with an estimate 
of a team’s probability of winning the game at various 
game states. For each plate appearance, one then credits 
the pitcher and batter with the resulting change in their 
respective team’s win probability and then sums these 
contributions over the course of a season to determine 
how involved a player was in his team’s wins (or losses). 
A natural extension of the WPA methodology to basket-
ball would be to measure the change in the win probabil-
ity from the time a player enters the game to the time he is 
substituted out of the game and then sum these changes 
over the course of a season. Such an extension is identi-
cal to the traditional plus-minus statistic except that it 
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is computed on the scale of win probability instead of 
points scored.

An inherent weakness of using plus-minus (on both 
the point and win probability scales) to assess a player’s 
performance is that a player’s plus-minus statistic neces-
sarily depends on the contributions of his teammates and 
opponents. According to Gramacy, Jensen, and Taddy 
(2013), since the the quality of any individual player’s pool 
of teammates and opponents can vary dramatically, “the 
marginal plus-minus for individual players are inherently 
polluted.” To overcome this difficulty, Rosenbaum (2004) 
introduced Adjusted Plus-Minus to estimate the average 
number of points a player scores per 100 possession after 
controlling for his opponents and teammates. To compute 
Adjusted Plus-Minus, one first breaks the game into 
several “shifts,” periods of play between substitutions, 
and measures both the point differential and total number 
of possessions in each shift. One then regresses the point 
differential per 100 possessions from the shift onto indica-
tors corresponding to the 10 players on the court.

We propose instead to regress the change in the home 
team’s win probability during a shift onto signed indi-
cators corresponding to the five home team players and 
five away team players in order to estimate each player’s 
partial effect on his team’s chances of winning. Briefly, if 
we denote the change in the home team’s win probability 
in the ith shift by yi, we then model the expected change in 
win probability given the players on the court, as

	 1 5 1 5[ | , ]i i i i h h a ai i i iE y µ θ θ θ θ= + + + − − −h a � � � (1)

where θ  =  (θ1, … θ488) is the vector of player partial effects 
and hi  =  {hi1, …, hi5} and ai  =  {ai1, …, ai5} are indices on θ 
corresponding to the home team (h) and away team (a) 
players. The intercept term μi may depend on additional 
covariates, such as team indicators.

Fitting the model in Equation 1 is complicated by the 
fact that we have a relatively large number of covariates 
(viz. a total of 488 players in the 2013–2014 season) dis-
playing a high degree of collinearity, since some players 
are frequently on the court together. This can lead to 
imprecise estimates of player partial effects with very 
large standard errors. Regularization, which shrinks the 
estimates of the components of θ towards zero, is there-
fore necessary to promote numerical stability for each 
partial effect estimate.

We take a Bayesian approach, which involves specify-
ing a prior distribution with mode at zero on each partial 
effect and using play-by-play data from the 2013–2014 
season to update these priors to get a posterior distribu-
tion of the partial effects. As Kyung et al. (2010) argue, the 
Bayesian formulation of regularized regression produces 

valid and tractable standard errors, unlike popular fre-
quentist techniques like the lasso of Tibshirani (1996). 
This enables us to quantify the joint uncertainty of our 
partial effect estimates in a natural fashion.

Our proposed methodology produces a retrospective 
measure of individual player contributions and does not 
attempt to measure a player’s latent ability or talent. Our 
estimates of player partial effect are context-dependent, 
making them unsuitable for forecasting future perfor-
mance since the context in which a player plays can vary 
season-to-season and even week-to-week. Nevertheless, 
because our proposal is context-dependent, we feel that 
it provides a more appropriate accounting of what actu-
ally happened than existing player-evaluation metrics like 
PER and ESPN’s Real Plus/Minus (RPM). Taken together 
with such existing metrics, our estimates of player effect 
can provide insight into whether coaches are dividing 
playing time most effectively and help understand the 
extent to which a player’s individual performance trans-
late to wins for his team.

The rest of this paper is organized as follows. We detail 
our data and regression model in Section 2 and describe 
our estimation of win probability in Section 2.1. Section 3 
presents a full Bayesian analysis of the joint uncertainty 
about player effects. In Section 3.1 we introduce leverage 
profiles to measure the similarity between the contexts in 
which two players performed. These profiles enable us to 
make meaningful comparisons of players based on their 
partial effect estimates. In keeping with the examples of 
other player evaluation metrics, we propose two rank-
orderings of players using their partial effects. In Section 
4, we rank players on a team-by-team basis, allowing us 
to determine each player’s relative value to his team. In 
Section 5, we present a single ranking of all players which 
balances a player’s partial effect against the posterior 
uncertainty in estimating his effect. We extend our analy-
sis of player partial effects in Section 6 to five-man lineups 
and consider how various lineups matchup against each 
other. We conclude in Section 7 with a discussion of our 
results and several extensions.

2  Data, models, and methods
Like Adjusted Plus/Minus, we break each game into shifts: 
periods of play between successive substitutions when the 
10 players on the court is unchanged. During the 2013–
2014 regular season, a typical game consisted of around 31 
shifts. In order to determine which players are on the court 
during each shift, we use play-by-play data obtained from 
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ESPN for 8365 of the 9840 (85%) of the scheduled regular 
season games in each of the eight seasons between 2006 
and 2014. The play-by-play data for the remaining 15% of 
games were either incomplete or missing altogether. The 
majority of the missing games were from the first half of 
the time window considered. To the best of our knowl-
edge, our dataset does not systematically exclude games 
from certain teams or certain types of games (early-season 
vs late-season, close game vs blow-out). Using the data 
from the 2006–2007 season to 2012–2013 season, we esti-
mate the home team’s win probability as a function of its 
lead and the time elapsed. With these win probability esti-
mates, we then compute the change in the home team’s 
win probability during each of n  =  35,799 shifts in the 
2013–2014 regular season. We denote the change in the 
home team’s win probability during the ith shift by yi. This 
change in win probability can be directly attributed to the 
performance of the 10 players on the court during that 
shift. Thus, to measure each individual player’s impact on 
the change in win probability, we regress yi onto indicator 
variables corresponding to which of the 488 players were 
on the court during the ith shift. We model

1 5 1 5|  ,i h h a a H A ii i i i i iy µ θ θ θ θ τ τ σε= + + + − − + − +i ih , a � �

� (2)

where θ  =  (θ1, …, θ488) is the vector of partial effects for 
the 488 players, τ  =  (τ1, …, τ30) is a vector of partial effects 
for the 30 teams, with hi  =  {hi1, …, hi5} and ai  =  {ai1, …, ai5} 
are indices on θ corresponding to the home team (h) and 
away team (a) players, Hi and Ai are indices on τ corre-
sponding to which teams are playing in shift i, and the 
εi are independent standard normal random variables. 
We view μ as a league-average “home-court advantage” 
and σ as a measure of the variability in yi that arises from 
both the uncertainty in measuring yi and the inherent 
variability in win probability that cannot be explained by 

the performance of the players on the court. Since we are 
including team effects in Equation 2, each player’s partial 
effect is measured relative to his team’s average, so that 
players are not overly penalized.

2.1  Estimation of win probability

In order to fit such a regression model, we must begin with 
an estimate of the probability that the home team wins 
the game after leading by L points after T seconds, which 
we denote by pT,L. Estimating win probability at specific 
intermediate times during a game is not a new problem; 
indeed, Lindsey (1963) estimated win probabilities in 
baseball in the 1960s and Stern (1994) introduced a probit 
regression model to estimate pT,L. Maymin, Maymin, and 
Shen (2012) expanded on that probit model to study when 
to take starters in foul trouble out of a game, Bashuk 
(2012) considered empirical estimates of win probability 
to predict team performance in college basketball, and 
Pettigrew (2015) recently introduced a parametric model to 
estimate win probability in hockey. Intuitively, we believe 
that pT,L is a smooth function of both T and L; for a fixed 
lead, the win probability should be relatively constant 
for a small duration of time. By construction, the probit 
model of Stern (1994) produces a smooth estimate of the 
win probability and the estimates based on all games from 
the 2006–2007 to 2012–2013 regular seasons are shown 
in Figure 1(A), where the color of the unit cell [T, T + 1]  ×   
[L, L + 1] corresponds to the estimated value of pT,L.

To get a sense of how well the probit estimates fit 
the observed data, we can compare them to the empiri-
cal estimates of pT,L given by the proportion of times that 
the home team has won after leading by L points after 
T seconds. The empirical estimates of pT,L are shown in 
Figure 1(B).
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Figure 1: Various estimates of pT,L. The probit estimates in (A), while smooth, do not agree with the empirical win probabilities shown in (B). 
Our estimates, shown in (C), are closer in value to the empirical estimates than are those in (A) but are much smoother than the empirical 
estimates.
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We see immediately that the empirical estimates are 
rather different than the probit estimates: for positive 
L, the probit estimate of pT,L tends to be much smaller 
than the empirical estimate of pT,L and for negative L, 
the probit estimates tend to overestimate pT,L. This dis-
crepancy arises primarily because the probit model is fit 
using only data from the ends of the first three quarters 
and does not incorporate any other intermediate times. 
Additionally, the probit model imposes several rather 
strong assumptions about the evolution of the win prob-
ability as the game progresses. As a result, we find the 
empirical estimates much more compelling than the 
probit estimates. Despite this, we observe in Figure 1(B) 
that the empirical estimates are much less smooth than 
the probit estimates. Also worrying are the extreme and 
incongruous estimates near the edges of the colored 
region in Figure 1(B). For instance, the empirical esti-
mates suggest that the home team will always win the 
game if they trailed by 18 points after five minutes of 
play. Upon further inspection, we find that the home 
team trailed by 18 points after five minutes exactly once 
in the seven season span from 2006 to 2013 and they 
happened to win that game. In other words, the empiri-
cal estimates are rather sensitive to small sample size 
leading to extreme values which can heavily bias our 
response variables yi in Equation 2.

To address these small sample issues in the empiri-
cal estimate, we propose a middle ground between the 
empirical and probit estimates. In particular, we let NT,L 
be the number of games in which the home team has led 
by ℓ points after t seconds where T – ht   ≤   t   ≤   T + ht and 
L – hl   ≤   ℓ   ≤   L + hl, where ht and hl are positive integers. We 
then let nT,L be the number of games which the home team 
won in this window and model nT,L as a Binomial (NT,L, 
pT,L) random variable. This modeling approach is based on 
the assumption that the win probability is relatively con-
stant over a small window in the (T, L)-plane. The choice 
of ht and hl dictate how many game states worth of infor-
mation is used to estimate pT,L and larger choices of both 
will yield, in general, smoother estimates of pT,L. Since 
very few offensive possession last six seconds or less and 
since no offensive possession can result in more than four 
points, we argue that the win probability should be rela-
tively constant in the window [T – 3, T + 3]  ×  [L – 2, L + 2] 
and we take ht  =  3, hl  =  2.

We place a conjugate Beta(αT,L, βT,L) prior on pT,L and 
estimate pT,L with the resulting posterior mean ,ˆ ,T Lp  given 
by
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The value of yi in Equation 2 is the difference between the 
estimated win probability at the end of the shift and at the 
start of the shift.

Based on the above expression, we can interpret αT,L 
and βT,L as “pseudo-wins” and “pseudo-losses” added to 
the observed counts of home team wins and losses in the 
window [T – 3, T + 3]  ×  [L – 2, L + 2]. The addition of these 
“pseudo-games” tends to shrink the original empirical 

estimates of pT,L towards ,

, ,
.T L

T L T L

α

α β+
 To specify αT,L and 

βT,L, it is enough to describe how many pseudo-wins and 
pseudo-losses we add to each of the 35 unit cells [t, + 1]  ×  [ℓ, 
ℓ + 1] in the window [T – 3, T + 3]  ×  [L – 2, L + 2]. We add a 
total of 10 pseudo-games to each unit cell, but the spe-
cific number of pseudo-wins depends on the value of ℓ For 
ℓ  <  –20 we add 10 pseudo-losses and no pseudo-wins and 
for ℓ  >  20, we add 10 pseudo-wins and no pseudo-losses. 
For the remaining values of ℓ, we add five pseudo-wins 
and five pseudo-losses. Since we add 10 pseudo-games to 
each cell, we add a total of αT,L + βT,L  =  350 pseudo-games 
the window [T – 3, T + 3]  ×  [L – 2, L + 2]. We note that this 
procedure does not ensure that our estimated win prob-
abilities are monotonic in lead and time. However, the 
empirical win probabilities are far from monotonic 
themselves, and our procedure does mitigate many of 
these departures by smoothing over the window [T – 3, 
T + 3]  ×  [L – 2, L + 2].

We find that for most combinations of T and L, NT,L 
is much greater than 350; for instance, at T  =  423, we 
observe NT,L  =  4018, 11,375, 17,724, 14,588, and 5460 for 
L  =  –10, –5, 0, 5, and 10, respectively. In these cases, the 
value of ,ˆ T Lp  is driven more by the observed data than by 
the values of αT,L and βT,L. Moreover, in such cases, the 
uncertainty of our estimate ,ˆ ,T Lp  which can be measured 
by the posterior standard deviation of pT,L is exceeding 
small: for T  =  423 and –10   ≤   L   ≤   10, the posterior stand-
ard deviation of pT,L, is between 0.003 and 0.007. When 
NT,L is comparable to or much smaller than 350, the 
values of αT,L and βT,L exert more influence on the value of 

,ˆ .T Lp  The increased influence of the prior on ,ˆ T Lp  in such 
rare game states helps smooth over the extreme discon-
tinuities that are present in the empirical win probabil-
ity estimates above. In these situations, there is a larger 
degree of uncertainty in our estimate of ,ˆ ,T Lp  but we find 
that the posterior standard deviation of pT,L never exceeds 
0.035. The uncertainty in our estimation of pT,L leads to 
additional uncertainty in the yi’s, akin to measurement 
error. The error term in Equation 2 is meant to capture 
this additional uncertainty, as well as any inherent varia-
tion in the change in win probability unexplained by the 
players on the court.
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2.2  �Bayesian linear regression of player 
effects

As mentioned in Section 1, we take a Bayesian approach 
to fitting the model in Equation 2. Because we have a large 
number of covariates displaying a high degree of collin-
earity, a regularization prior that shrinks each component 
of θ towards zero is needed to promote stability for each 
partial effect. Popular choices of regularization priors on 
the components θj include a normal prior, which corre-
sponds to an ℓ2 penalty, or a Laplace prior, which corre-
sponds to an ℓ1 penalty. Thomas et al. (2013) also consider 
a Laplace-Gaussian prior, which combines both ℓ2 and ℓ1 
penalties. Maximum a posteriori estimation with respect 
to these priors correspond to ridge, lasso, and elastic net 
regression, respectively.

We choose to use the Laplace prior, which was also 
considered by Thomas et al. (2013) to derive rankings of 
National Hockey League players. Between the normal and 
Laplace prior, we choose to use the Laplace prior since it 
tends to pull smaller partial effects towards zero faster 
than the normal prior, as noted by Park and Casella (2008). 
We are thus able to use the existing R implementation of 
Park and Casella (2008)’s Gibbs sampler in the monomvn 
package. Though the elastic net is better suited for regres-
sion problems in which there are groups of highly corre-
lated predictors than is the lasso Zou and Hastie (2005), 
there is no widely-available Gibbs sampler and the com-
putational challenge of implementation offsets the addi-
tional benefit we gain from using the Laplace-Gaussian 
prior. We let Pi be a vector indicating which players are on 
the court during shift i so that its jth entry, ,ijP  is equal to 1 
if player j is on the home team, –1 if player j is on the away 
team, and 0 otherwise. Similarly, we let Ti be a vector indi-
cating which teams are playing during shift i so that its 
kth entry, ,ikT  is equal to 1 if team k is the home team, –1 is 
team k is the away team, and 0 otherwise. Conditional on 
Pi and Ti, we model

2| , ( , ).i i i i
iy N µ θ τ σ∼ + +P T P T� �

We place independent Laplacian priors on each com-
ponent of θ and τ, conditional on the corresponding noise 
parameters σ2 The conditional prior densities of (θ, τ) 
given σ2 is given by

488 488
2

1

30 30

1

( , | ) exp | |
2

exp | | ,
2

j
j

k
k

p λ λ
θ τ σ θ

σ σ

λ λ
τ

σ σ

=

=

      ∝ × −        
      × × −       

∑

∑

where λ  >  0 is a sparsity parameter that governs how much 
each component of θ is shrunk towards zero. We further 
place a flat prior on μ, a Gamma(r, δ) hyper-prior on λ2, 
and non-informative hyper-priors on σ2, r, and δ.

Because of the hierarchical structure of our model, 
the joint posterior distribution of (μ, θ, τ, σ2) is not analyti-
cally tractable and we must instead rely on a Markov Chain 
Monte Carlo (MCMC) simulation to estimate the posterior 
distribution. We use the Gibbs sampler described by Park 
and Casella (2008) that is implemented in the monomvn 
package in R. We note that our prior specification is the 
default setting for this implementation.

In specifying this regression model, we make several 
strong assumptions. First, we assume that the siy′  are 
independent. Since it is generally not the case that all 10 
players are substituted out of the game at the end of the 
shift, it is reasonable to expect that there will be some 
autocorrelation structure among the yi’s. Indeed, as seen 
in the autocorrelation plot in Figure  2(B), we observe 
a small amount of autocorrelation (–0.1) between yi 
and yi + 1. We also observe that there is no significant 
autocorrelation at larger lags. While the independence 
assumption is not technically correct, the lack of persis-
tent autocorrelation and the relatively weak correlation 
between yi and yi + 1, make the assumption somewhat 
more palatable.

Our second modeling assumption is that, conditional 
on (Pi, Ti), the yi’s are Gaussian with constant variance. 
This conditional Gaussian assumption does not imply that 
the yi’s are marginally Gaussian (which does not seem to 
be the case in Figure 2(A)). Despite the fact that we have 
35,799 shifts in our dataset, we find that there are 29,453 
unique combinations of 10 players on the court. Thus, we 
only observe a few instances of each unique (Pi, Ti) making 
it difficult to assess the conditional normality assumption 
directly. The limited number of each (Pi, Ti) also makes it 
difficult to check the assumption of constance variance of 
the yi’s conditional on (Pi, Ti). In the Appendix, we explore 
several transformations and alternative specifications 
of the yi’s, but do not find alternatives that match these 
assumptions better than our current specification.

At this point, it is also worth mentioning that our 
model does not explicitly include the duration of each 
shift as a predictor, despite the fact that yi depends on shift 
length. Figure  3(A) shows the change in win probability 
associated with varying shift durations and varying lead 
changes. Quite clearly, we see that the curves in Figure 3(A) 
are different, indicating a dependence between yi and shift 
duration, although we see in Figure 3(B) that the overall 
correlation is quite small. On a conceptual level, a player’s 
performance in a 15  s shift during which his team’s win 
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probability increases by 20% has the same impact on his 
team’s chances of winning had the shift lasted 30 s. Since 
our ultimate goal is to estimate each player’s individual 
impact, as opposed to his playing time-adjusted impact 
or per-minute impact, including shift duration as an 
additional predictor distorts the desired interpretation of 
player partial effects. In fact, we assert that the change in 
win probability as an outcome variable is the most natural 
way to account for the effect of shift duration on a player’s 
overall impact on the court.

3  Full posterior analysis
We use the Gibbs sampler function lasso in the monomvn 
R package to obtain 1000 independent samples from 
the full posterior distribution of (μ, θ, τ, σ2). With these 

samples, we can approximate the marginal posterior 
density of each player’s partial effect using a standard 
kernel density estimator. Figure  4 shows the estimated 
posterior densities of the partial effects of several players.

We see that these densities are almost entirely sup-
ported within the range [–0.02, 0.02], indicating that it is 
unlikely that any individual player, over the course of a 
single shift, is able to improve (or hurt) his team’s chances 
of winning the game by more than a percentage point or 
two. This is partly due to our regularization prior, which 
tends to pull the components of θ and τ towards zero, and 
to the fact that the yi’s are tightly concentrated near zero. 
Nevertheless, though our estimates of each player’s partial 
effect are small, we still see considerable heterogeneity in 
the approximate posterior densities. Most strikingly, we 
see that the posterior distribution of Dirk Nowitzki’s partial 
effect is mostly supported on the positive axis (in 991 out 
of our 1000 posterior samples, his effect is positive) while 

Figure 2: Histogram and autocorrelation plot of the yi’s.
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Figure 3: Change in win probability plotted against shift duration.
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different players. Figure 5 show the approximate posterior 
densities of Durant, Gee, James, and Nowitzki after weeks 
1, 5, 10, 15, 20, and 25 of the season.

Through the first five weeks of the season, the poste-
rior distributions of each player’s partial effects are virtu-
ally identical. However, after 10 weeks, we begin to see 
some separation, with Gee’s density moving towards the 
left and Durant’s density moving towards the right. This 
suggests that we need at least 10 weeks worth of data 
(approximately 30–35 games) in order to identify differ-
ences in player partial effects. We see a rather consider-
able gap between Durant’s and James’ densities by week 
15 and we observe that Durant’s partial effect is greater 
than James’ in nearly 75% of the posterior samples up 
to that time. Over the next 10 weeks, though, this gap 
shrinks considerably: visually, the two posterior densi-
ties become increasingly indistinguishable and the pro-
portion of posterior samples in which Durant’s partial 
effect is greater than James’ shrinks back towards 0.5. This 
mirrors the general consensus described by Ballentine 
(2014) and Buckley (2014) about how the race for the MVP 
award evolved: Durant was the clear front-runner for the 
MVP award by late January (approximately week 13 of the 
season) but many reporters declared the race much closer 
after James’ historic performances in weeks 18 and 19 
(including multiple 40-point performances and a 61-point 
performance against Charlotte). We also see that the sepa-
ration between Nowitzki’s density and Durant’s density 
increases between weeks 15 and 20.

3.1  Comparing players

Directly comparing partial effects for all pairs of players is 
complicated by the fact that players perform in different 
contexts. To determine which players are most compara-
ble, we determine the total number of shifts each player 
played, his team’s average win probability at the start of 
these shifts, the average duration of these shifts, and the 
average length of each shift. We call this information a 
player’s leverage profile. We then compute the Mahalano-
bis distance between the leverage profiles of each pair 
of players. Table 1 shows the four players with the most 
similar leverage profile for several players and Figure  6 
shows comparison box plots of the posterior distribution 
of their partial effects.

We see that the posterior distributions of partial effects 
for each player in Table 1 are well-separated from the pos-
terior distribution of partial effects of the player with the 
most similar leverage profile. For instance, LeBron James’ 
leverage profile is most similar to DeAndre Jordan’s, but 

the posterior distribution of Alonzo Gee’s partial effect is 
mostly supported on the negative axis (his partial effect is 
negative in 976 out of 1000 posterior samples).

Intuitively, we can measure a player’s “value” by his 
partial effect on his team’s chances of winning. Among 
the players in Figure 4, we see that Nowitzki was the most 
valuable since his density lies further to the right than 
any other player’s. However, there is considerable overlap 
in the support of his density and that of Kevin Durant, 
making it difficult to determine who is decidedly the “most 
valuable.” Indeed, we find that Nowitzki’s partial effect is 
greater than Kevin Durant’s in 692 out of 1000 posterior 
samples. We also observe high similarity in the posterior 
densities of Durant and LeBron James, who finished first 
and second, respectively, in voting for the 2013–2014 Most 
Valuable Player (MVP) award. On closer inspection, we 
find that Durant’s partial effect is greater than James’ in 
only 554 of the 1000 posterior samples, indicating that, 
by the end of the 2013–2014 regular season, Durant and 
James had very nearly the same impact on their teams’ 
chances of winning, with Durant enjoying a rather slight 
advantage. In the context of the MVP award, then, our 
results would suggest that Durant is only slightly more 
deserving than James, but Nowitzki is more deserving 
than both Durant and James.

We can also track how the posterior distribution of 
player partial effects evolve over the course of the season, 
which helps to determine how many games worth of data 
is necessary to start differentiating the partial effects of 

Figure 4: Approximate posterior densities of several players’ partial 
effects.
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Figure 5: Approximate posterior densities of Kevin Durant’s, LeBron James’, and Dirk Nowitzki’s partial effect as the season progresses.

Table 1: Most similar leverage profiles.

Player   Similar players  

LeBron James   DeAndre Jordan (0.025)   Kevin Durant (0.055)
  Blake Griffin (0.082)   Stephen Curry (0.204)

Chris Paul   Shawn Marion (0.081)   Courtney Lee (0.103)
  Terrence Ross (0.126)   Chris Bosh (0.141)

Kyrie Irving   DeMarcus Cousins (0.080)   Tristan Thompson (0.087)
  Brandon Bass (0.099)   Randy Foye (0.109)

Zach Randolph  Jimmy Butler (0.020)   David West (0.045)
  Mike Conley (0.063)   George Hill (0.073)

Mahalanobis distance shown in parentheses.

we see that James’ posterior distribution is located to the 
right of Jordan’s and we find that in 884 of the 1000 pos-
terior samples, James’ partial effect is greater than Jor-
dan’s. This suggests that while James and Jordan played in 
similar contexts, James’ performance in these situations 
was more helpful to his team than Jordan’s.

3.2  Team effects

Recall that the inclusion of team effects, τ, in Equation 
2 was to ensure that the partial effects of players were 

not overly deflated if they played on bad teams or overly 
inflated if they played on good teams. Figure 7 shows box 
plots of the posterior distribution of all team effects.

We see that the Milwaukee Bucks and Sacramento 
Kings have a noticeably negative effect. This suggests 
that opposing teams generally increased their chances of 
winning, regardless of which five Bucks or Kings players 
were on the court. This is in contrast with the San Antonio 
Spurs, whose team effect is substantially positive. Figure 8 
shows comparative box plots of the posterior distribution 
of the partial effects for a few Bucks, Kings, and Spurs 
players.

The fact that the posterior distributions of Isaiah 
Thomas’, DeMarcus Cousins’, and Khris Middleton’s 
partial effects are predominantly concentrated on the 
positive axis indicates that their performance stood out 
despite the relatively poor quality of their team. On the 
other hand, the posterior distributions of Ben McLemore’s, 
O.J. Mayo’s, and Brandon Knight’s partial effects are pre-
dominantly concentrated on the negative axis, indicating 
that their teams’ already diminished chances of winning 
decreased when they were on the court. The fact that 
Manu Ginobili has such a large positive partial effect is 
especially noteworthy, given the Spurs’ already large posi-
tive effect.
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Figure 6: Comparison box plots of partial effects of players with similar leverage profiles.

4  Impact ranking
Since we may view a player’s partial effect as an indication 
of his value to his team, we can generate a rank-ordering 
of the players on each team based on their partial effects. 
Intuitively, we could rank all of the members of a particu-
lar team by the posterior mean or median of their partial 
effects. Such an approach, however, does not incorporate 
the joint uncertainty of the partial effects. Alternatively, 
for each team and each posterior sample of θ, we could 
rank the partial effects of all players on that team and 
then identify the rank-ordering with highest posterior 
frequency. Unfortunately, since there are over one trillion 
orderings of 15 players (the minimum number of players 
per team), such an approach would require an imprac-
tical number of posterior samples. Instead, we propose 

to average the player rankings over the 1000 posterior 
samples to get their Impact Ranking. Table  2 shows 
the Impact Ranking for the players on the San Antonio 
Spurs and the Miami Heat, with the most common start-
ing lineup bolded and players who played very limited 
minutes starred.

In Table 2, we see that the most impactful player for 
the Spurs, Manu Ginobili, is a bench player, while five 
of the next six most impactful players were the most 
common starters. This is in contrast to the Heat, for whom 
we only observe three starters in the top five most impact-
ful players and a rather significant drop-off down to the 
remaining starters. For instance, Dwayne Wade was not 
nearly as impactful as several Heat bench players and 
Shane Battier was even less valuable than several players 
who had very limited minutes (DeAndre Liggins and 
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Figure 7: Comparison box plots of the posterior distribution of team 
effects.

Figure 8: Comparison box plots of partial effects of selected Bucks, Kings, and Spurs players.

Justin Hamilton) or limited roles (Greg Oden). This indi-
cates that the Heat did not rely much on Wade or Battier 
to win games, despite their appearance in the starting 
lineup. We can further compare each player’s salary to his 
impact ranking to get a sense of which players are being 
over- or under-valued by their teams. For instance, Patty 
Mills earned only $1.3M, the eleventh highest salary on 
the Spurs, despite being the third most impactful player 
on the team. In contrast, Wade was the ninth most impact-
ful player on Heat, despite earning nearly $15 million 

dollars more than Mario Chalmers, who was the third 
most impactful player for the Heat.

5  Impact Score
A natural use of any player evaluation methodology is 
to generate a single ranking of all players and we could 
simply rank all players in the league according to the pos-
terior mean of their partial effects. Unfortunately, since 
the mean by influenced by a few very extreme value, such 
a ranking can overvalue players whose partial effects have 
large posterior variance. To try to account for the joint var-
iability of player effects, we can rank the players’ partial 
effect estimates in each of our 1000 simulated posterior 
samples. Then we could compute 95% credible intervals 
for each player’s partial effects-based rank. We find, 
however, that these intervals are rather long. For instance, 
we find that LeBron James had the largest partial effect 
among all players in only 11 of the 1000 posterior samples 
and the 95% credible interval for his rank is [3,  317]. 
Similarly, we find that Kevin Durant also had the largest 
partial effect among all players in 11 of the 1000 posterior 
samples and the 95% credible for his rank is [2, 300]. It 
turns out that Dirk Nowitzki had the largest partial effect 
in the most number of posterior samples (39 out of 1000) 
but the credible interval for his rank is [1, 158]. Given the 
considerable overlap in the posterior distributions of 
player partial effects as seen in Figure 4, it is not surpris-
ing to see the large joint posterior variability in player 
partial effects reflected in the rather long credible inter-
vals of each player’s partial effects-based ranks.
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We instead propose to rank players according to their 
Impact Score, which we define as the ratio between the 
posterior mean and the posterior standard deviation of a 
player’s partial effect. This definition is very similar to the 
Sharpe Ratio used in finance to examine the performance 
of an investment strategy. We may view Impact Score as 
a balance between a player’s estimated “risk” (i.e. uncer-
tainty about his partial effect) and a player’s estimated 
“reward” (i.e. average partial effect). As an example, we 
find that the posterior mean of Iman Shumpert’s partial 
effect is less than the posterior mean of Chris Bosh’s partial 
effect (0.0063 compared to 0.0069). We also find that the 
posterior standard deviation of Shumpert’s partial effect 
is 0.0034 while it is 0.0039 for Bosh. Between the two 
players, Shumpert gets the edge in Impact Score rankings 
because we are less uncertain about his effect, despite 
him having a smaller average effect compared to Bosh. 
Table 3 shows the 30 players with largest Impact Scores. 
Somewhat unsurprisingly, we see a number of superstars 
in Table 3. Patrick Patterson is a notable standout; as 
Cavan (2014) and Lapin (2014) note, he provided valuable 
three-point shooting and rebounding off the bench for the 
Toronto Raptors.

It is important to note that our reported Impact Scores 
are subject to some degree of uncertainty, since we have 
to estimate the posterior mean and standard deviation 
of each player’s partial effect. This uncertainty amounts 

Table 2: Impact ranking for San Antonio Spurs and Miami Heat 
players.

Rank  San Antonio Spurs   Miami Heat

1   Manu Ginobili ($7.5M, 0.719)   Chris Bosh ($19.1M, 0.650)
2   Danny Green ($3.8M, 0.540)   LeBron James ($19.1M, 0.683)
3   Patty Mills ($1.3M, 0.531)   Mario Chalmers ($4M, 0.577)
4   Kawhi Leonard ($1.9M, 0.631)   Ray Allen ($3.2M, 0.571)
5   Tiago Splitter ($10M, 0.510)   Toney Douglas ($1.6M, 0.486)
6   Tony Parker ($12.5M, 0.554)   Roger Mason Jr. ($0.8M, 0.509)
7   Tim Duncan ($10.4M, 0.518)   Chris Andersen ($1.4M, 0.518)
8   Damion James* ($20K, 0.489)  James Jones ($1.5M, 0.520)
9   Boris Diaw ($4.7M, 0.566)   Dwyane Wade ($18.7M, 0.515)
10   Matt Bonner ($3.9M, 0.582)   DeAndre Liggins* ($52K, 0.520)
11   Jeff Ayres ($1.8M, 0.556)   Norris Cole ($1.1M, 0.570)
12   Nando de Colo ($1.4M, 0.561)   Justin Hamilton* ($98K, 0.541)
13   Austin Daye ($0.9M, 0.530)   Michael Beasley ($0.8M, 0.511)
14   Aron Baynes ($0.8M, 0.513)   Greg Oden ($0.8M, 0.503)
15   Cory Joseph ($1.1M, 0.583)   Rashard Lewis ($1.4M, 0.525)
16   Marco Belinelli ($2.8M)   Shane Battier ($3.3M, 0.618)
17     Udonis Haslem ($4.3M)

For each player, we report both his salary and the approximate 
probability that his partial effect is greater than the that of the 
player ranked immediately after him. Starred players played very 
limited minutes.

Table 3: Players with the highest Impact Scores.

1. Dirk Nowitzki (2.329)   16. Eric Bledsoe (1.274)
2. Patrick Patterson (1.939)  17. Dwight Howard (1.273)
3. Iman Shumpert (1.823)   18. Danny Green (1.214)
4. Chris Bosh (1.802)   19. Deron Williams (1.212)
5. Manu Ginobili (1.779)   20. Matt Barnes (1.206)
6. James Harden (1.637)   21. Roy Hibbert (1.205)
7. Chris Paul (1.588)   22. J.J. Redick (1.201)
8. Zach Randolph (1.56)   23. Shaun Livingston (1.201)
9. Joakim Noah (1.555)   24. Marcin Gortat (1.185)
10. Stephen Curry (1.514)   25. Greivis Vasquez (1.175)
11. Nene Hilario (1.474)   26. Blake Griffin (1.174)
12. Andre Iguodala (1.445)   27. Anthony Tolliver (1.151)
13. Kevin Durant (1.410)   28. LaMarcus Aldridge (1.140)
14. LeBron James (1.324)   29. Courtney Lee (1.131)
15. Isaiah Thomas (1.310)   30. Nate Robinson (1.126)

to MCMC simulation variability and induces some uncer-
tainty in the reported player rankings. In order to quan-
tify the induced uncertainty explicitly, we could run our 
sampler several times, each time generating a draw of 
1000 simulated posterior samples and ranking the players 
according to the resulting Impact Scores. We could then 
study the distribution of each player’s ranking. While 
straightforward in principle, the computational burden 
of running our sampler sufficiently many times is rather 
impractical. Moreover, we suspect the simulation-to-sim-
ulation variability in Impact Scores is small. Since we are 
estimating the posterior mean and standard deviation of 
player partial effects with 1000 samples, we are reason-
ably certain that the estimated values are close to the true 
values. As a result, our reported Impact Scores are reason-
ably precise and we do not expect much variation in the 
player rankings.

5.1  �Comparison of Impact Score to other 
metrics

Hollinger (2004) introduced PER to “sum up all [of] a 
player’s positive accomplishments, subtract the nega-
tive accomplishments, and a return a per-minute rating 
of a player’s performance.” Recently, ESPN introduced 
RPM which improves on Adjusted Plus-Minus through a 
proprietary method that, according to Ilardi (2014), uses 
“Bayesian priors, aging curves, score of the game and 
extensive out-of-sample testing.” Figure  9 shows Impact 
Score plotted against PER and RPM. We note that of the 
488 players in our data set, RPM was available for only 437. 
In Figure 9, we have excluded the six players whose PER 
is greater than 33 or less than –3 so that the scale of the 
figure is not distorted by these extreme values.
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We find that the correlation between Impact Score 
and PER is somewhat moderate (correlation 0.226) and 
that Impact Score is much more highly correlated with 
RPM (correlation of 0.655). This is somewhat expected, 
since PER is essentially context-agnostic and RPM at least 
partially accounts for the context of player performance. 
To see this, we note that the number of points a player 
scores is a key ingredient in the PER computation. What 
is missing, however, is any consideration of when those 
points were scored. RPM is more context-aware, as it 
considers the score of the game when evaluation player 
performance. However, since the RPM methodology is 
proprietary, the extent to which the context in which a 
player performs influences his final RPM value remains 
unclear.

As we noted in Section 1, metrics like PER and point-
differential metrics can overvalue low-leverage perfor-
mances. An extreme example of this is DeAndre Liggins’ 
PER of 129.47. Liggins played in a single game during 
the 2013–2014 regular season and in his 84 s of play, he 
made his single shot attempted and recorded a rebound. 
We note, however, that Liggins entered the game when 
his team had a 96.7% chance of winning the game and 
his performance did not improve his team’s chances of 
winning in any meaningful way. Figure 10 plots each play-
er’s Impact Score, PER, and RPM against the average win 
probability of each player’s shifts. In Figure 10, we have 
included the players with very negative PER values who 
were excluded from Figure 9.

In Figure 10, we see that the average starting win prob-
ability for Chris Smith, Vander Blue, Tony Mitchell, and 
DeAndre Liggins was less than 0.2 or greater than 0.8, sug-
gesting that they played primarily in low-leverage situa-
tions. We see that while their PERs ranged from –23 to 130, 

their Impact Scores are all very close to zero. This confirms 
that our methodology correctly values so-called “garbage 
time” performance. It is interesting to note Hasheem 
Thabeet played when his team had, on average, above a 
70% of winning the game. His negative Impact Score is an 
indication that his performance generally hurt his team’s 
chances of winning and we find that he had a negative 
partial effect in 678 of the 1000 posterior samples.

While it is encouraging that there is at least some 
positive correlation between Impact Scores and PER, 
simply looking at the correlation is not particularly 
informative, as these metrics are measuring rather dif-
ferent quantities. Of greater interest, perhaps, is to see 
when PER and Impact Score agree and when they disa-
gree. For instance, we find players like LeBron James, 
Chris Paul and Dirk Nowitzki who have both large PER 
values and large Impact Scores. The large PER values 
are driven by the fact that they efficiently accumulated 
more positive box-score statistics (e.g. points, assists, 
rebounds, etc.) than negative statistics (e.g. turnovers 
and fouls) and the large Impact Scores indicate that their 
individual performances helped improve their team’s 
chances of winning. On the other hand, Brook Lopez and 
Kyrie Irving have the ninth and twenty-ninth largest PER 
values but their rather middling Impact Scores suggest 
that, despite accumulating impressive individual statis-
tics, their performances did not actually improve their 
teams’ chances of winning.

In contrast to Irving and Lopez, players like Iman 
Shumpert and Andre Iguodala have below-average PER 
values but rather large Impact Scores. Shumpert has a 
PER of 9.66, placing him in the bottom 25% of the league, 
but has the fourth largest Impact Score. This suggests 
that even though Shumpert himself did not accumulate 

Figure 9: Comparison of Impact Score to PER (A) and RPM (B). We find that RPM is much more consistent with Impact Score than is PER, 
though there are still several inconsistencies in overall player evaluation. Note that PER is calibrated so the league average is 15.00.
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Figure 10: Impact Score, PER, and RPM plotted against average starting win probability. Note that RPM was unavailable for 51 players.

particularly impressive individual statistics, his team 
nevertheless improved its chances of winning when he 
was on the court. It is worth noting that Shumpert and 
Iguodala are regarded as top defensive players. As Golds-
berry and Weiss (2013) remark, conventional basketball 
statistics tend to emphasize offensive performance since 
there are not nearly as many discrete defensive factors 
to record in a box score as there are offensive factors. 
As such, metrics like PER can be biased against defen-
sive specialists. It is re-assuring, then, to see that Impact 
Score does not appear to be as biased against defensive 
players as PER.

It is important to note that the fact that Shumpert and 
Iguodala have much larger Impact Scores than Lopez and 

Irving does not mean that Shumpert and Iguodala are 
inherently better players than Lopez and Irving. Rather, 
it means that Shumpert’s and Iguodala’s performances 
helped their teams much more than Irving’s or Lopez’s. 
One explanation for the discrepancies between Lopez 
and Irving’s Impact Scores and PERs could be coaching 
decisions. The fact that Lopez and Irving were accumu-
lating impressive individual statistics without improv-
ing their respective teams’ chances of winning suggests 
that their coaches may not have been playing them at 
opportune times for their teams. In this way, when taken 
together with a metric like PER, Impact Score can provide 
a more complete accounting and evaluation of a player’s 
performance.
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5.2  Year-to-year correlation of Impact Score

A natural question to ask about any player evaluation 
metric is how stable it is year-to-year. In other words, to 
what extent can we predict how a player ranks with respect 
to one metric in a season given his ranking in a previous 
season. Using play-by-play data from the 2012–2013 regular 
season, we can fit a model similar to that in Equation 2 and 
compute each player’s Impact Score for that season. There 
were 389 players who played in both the 2012–2013 and 
2013–2014 seasons and Figure 11 plots there players’ 2012–
2013 Impact Scores against their 2013–2014 Impact Scores.

We observe that the correlation between 2012–2013 and 
2013–2014 Impact Score is 0.242, indicating a rather moder-
ate positive trend. We notice, however, that there are several 
players whose Impact Scores in 2012–2013 are much different 
than their Impact Scores in 2013–2014. For instance, Iman 
Shumpert’s and Dirk Nowitzki’s Impact Scores increased 
dramatically between the two season. At the other end of the 
spectrum, players like Larry Sanders and Tyson Chandler 
displayed sharp declines in their Impact Scores. On further 
inspection, we find that all of these players missed many 
games due to injury in the seasons when they had lower 
Impact Scores. Upon their return from injury, they played 

fewer minutes while they continued to rehabilitate and re-
adjust to playing at a high-level. In short, the variation in the 
contexts in which these players performed is reflected in the 
the season-to-season variation in their Impact Score.

Because it is context-dependent, we would not expect 
the year-to-year correlation for Impact Scores to be nearly 
as high as the year-to-year correlation for PER (correla-
tion of 0.75), which attempts to provide a context-agnostic 
assessment of player contribution. Nevertheless, we may 
still assess the significance of the correlation we have 
observed using a permutation test. To simulate the dis-
tribution of the correlation between 2012–2013 and 2013–
2014 Impact Scores, under the hypothesis that they are 
independent, we repeatedly permute the observed 2013–
2014 Impact Scores and compute the correlation between 
these permuted scores and the observed 2012–2013 Impact 
Scores. Figure 12 shows a histogram of this null distribu-
tion based on 500,000 samples.

We find that the observed correlation is significantly 
different than zero. This indicates that even though 
Impact Scores are inherently context-dependent, a play-
er’s Impact Score is one season is moderately predictive 
of his Impact Score in the next, barring any significant 
changes in the contexts in which he plays.

Figure 11: Impact Scores in 2012 and 2013.
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5.3  Multi-season impact score

Though the context in which players perform between 
seasons can be highly variable, it is arguably more stable 
across multiple seasons. In light of this, we can re-fit our 
models using all of the play-by-play data from 2008–2009 
to 2010–2011 and from 2011–2012 to 2013–2014, and esti-
mated each player’s partial effect separately in both time 
period. Note that for each season considered, the change 
in win probability during a shift was estimated using data 
from all prior seasons.

Somewhat surprisingly, we find that the posterior 
standard deviations of the player partial effects estimated 
over multiple seasons is not substantially smaller than 
when we consider one seasons at a time, despite having 
much more data. For instance, the posterior standard 
deviation of LeBron James’ partial effect in the 2013–2014 
season is 0.0035 while it is 0.002 over the three season 
span from 2008–2009 to 2010–2011. Table 4 shows the top 
10 Impact Scores over these two three-season periods.

Quite clearly, LeBron James stands out rather promi-
nently, especially in the 2008–2010 time period, as far and 
away the most impactful player over those three seasons. 
We note that James’ 2013–2014 Impact Score is much less 
than either of his multi-season Impact Scores. This indi-
cates that while James may have been most impactful 
player over the course of several seasons, in that particu-
lar season, he was not as impactful.

8
Null distribution of correlation between 2012 and 2013 Impact Scores
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Figure 12: Null distribution of correlation between 2012–2013 and 
2013–2014 Impact Scores under the hypothesis that they are inde-
pendent. The observed correlation of 0.242 is shown in red.

Table 4: Impact Score computed over three seasons windows.

2008–2009 to 2010–2011  2011–2012 to 2013–2014

LeBron James (5.400)   LeBron James (3.085)
Dirk Nowitzki (3.758)   Chris Paul (3.041)
Chris Paul (3.247)   Amir Johnson (2.982)
Dwyane Wade (2.948)   Stephen Curry (2.919)
LaMarcus Aldridge (2.775)   Andre Iguodala (2.805)
Steve Nash (2.770)   Mike Dunleavy (2.790)
Tim Duncan (2.679)   Dirk Nowitzki (2.733)
Matt Bonner (2.178)   Kevin Durant (2.426)
Kevin Garnett (2.125)   Paul George (2.332)

Figure 13 shows the Impact Scores from 2011 to 2013 
plotted against the Impact Scores 2008–2010. The correla-
tion between these scores is 0.45, which is larger than the 
year-to-year correlation in Impact Score. The players with 
discordant single season Impact Scores highlighted in 
Figure 11 were all recovering from significant injuries that 
required them to miss many games and play restricted 
minutes for a good portion of the season. Since there are 
generally few injuries which span significant portions of 
multiple seasons, the context in which players perform 
tend to stabilize across several seasons.

6  Lineup comparison
As a further study of the full covariance structure of θ 
and τ, we can compare how different five-man lineups 
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Figure 13: Impact Scores computed over 2008–2010 and 2011–2013.
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match up against each other. To simulate the posterior 
distribution of a five-man lineup’s effect on its team’s win 
probability, we simply sum the corresponding entries of 
each posterior sample of θ. With these samples, we can 
compute each lineup’s Impact Score just as we did for 
player’s in Section 5: we divide the posterior mean of 
the lineup’s effect by the posterior standard deviation of 
its effect. Table  5 shows the 10 lineups with the largest 
Impact Scores.

We can also simulate draws from the posterior predic-
tive distribution of the change in home team win probabil-
ity for each home/away configurations of two five-man 
lineups using our posterior samples of (μ, θ, τ, σ2). For a 
specific home/away configuration, we construct vectors of 
signed indicators, P* and T*, to encode which players and 
teams we are pitting against one another. For each sample 
of (μ, θ, τ, σ2) we compute

zµ θ τ σ∗ ∗+ + +P T� �

where z ~ N(0, 1), to simulate a sample from the posterior 
predictive distribution of the change in the home team’s 
win probability for the given matchup. In particular, we 
consider pitting the lineup with the largest Impact Score 
(Stephen Curry, Klay Thompson, Andre Iguodala, David 
Lee, Andrew Bogut) against three different lineups: the 
lineup with second largest Impact Score (Chris Paul, J.J. 
Redick, Matt Barnes, Blake Griffin, DeAndre Jordan), 
the lineup with the smallest Impact Score (Eric Maynor, 
Garrett Temple, Chris Singleton, Trevor Booker, Kevin 
Seraphin), and the lineup with the median Impact Score 
(Donald Sloan, Orlando Johnson, Solomon Hill, Lavoy 
Allen, Roy Hibbert). The median lineup’s Impact Score is 
the median of all lineup Impact Scores. Figure 14 shows 
the posterior predictive densities of the change in win 
probability in a single shift when the lineup with largest 
Impact Score plays at home.

Unsurprisingly, when the lineup with largest Impact 
Score is pitted against the lineup with smallest Impact 
Score, the predicted change in win probability is positive 
about 65% of the time and is greater than 0.1 just over 23% 
of the time. It is also reassuring to see that the density cor-
responding to the matchup against the median lineup lies 
between the two extremes considered. Rather surpris-
ingly, however, we find that when the lineup with largest 
Impact Score is pitted against the lineup with second 
largest Impact Score, the change in win probability is 
negative about 55% of the time. We find that posterior 
mean effect of the Paul-Reddick-Barnes-Griffin-Jordan 
lineup is 0.0166 while the posterior mean effect of the 
Curry-Thompson-Iguodala-Lee-Bogut lineup is 0.0150. 
The difference in Impact Score is driven by the difference 
in the posterior standard deviation of each lineup’s effect 
(0.0050 for Curry-Thompson-Iguodala-Lee-Bogut and 
0.0058 for Paul-Reddick-Barnes-Griffin-Jordan). Because 
of the disparity in playing time (780.25 min vs 88.57 min), 
we are less uncertain about the effect of the Curry-
Thompson-Iguodala-Lee-Bogut lineup and the additional 
certainty makes up for the smaller average effect. This 
highlights an important feature of Impact Score: it tries 
to balance the estimated effect against the uncertainty in 
this estimate.

At this point, it is worth nothing that while the 
change in win probability over the course of any shift 
is constrained to lie between –1 and 1, none of our mod-
eling assumptions restrict the range of the predicted 
change in win probability in any of the match-ups con-
sidered to lie in this range. In particular, since we have 
a conditional normal model, it could be the case that σz 
term pushes our prediction outside of the interval [–1, 1]. 
In light of this, it is reassuring to find that the support 
of posterior predictive distributions of the change in 
win probability in all of the match-ups considered is in 
[–0.4, 0.4].

Table 5: Lineups with the largest impact score.

  Lineup   Impact Score  Minutes

1   Stephen Curry, Klay Thompson, Andre Iguodala David Lee, Andrew Bogut   2.98  780.25
2   Chris Paul, J.J. Redick, Matt Barnes Blake Griffin, DeAndre Jordan   2.88  88.57
3   Stephen Curry, Klay Thompson, Andre Iguodala David Lee, Jermaine O’Neal   2.82  31.75
4   George Hill, Lance Stephenson, Paul George David West, Roy Hibbert   2.58  1369.38
5   Mario Chalmers, Ray Allen, LeBron James Chris Bosh, Chris Andersen   2.57  34.28
6   Patrick Beverley, James Harden, Chandler Parsons Terrence Jones, Dwight Howard   2.51  589.97
7   Mario Chalmers, Dwyane Wade, LeBron James Chris Bosh, Chris Andersen   2.46  26.2
8   C.J. Watson, Lance Stephenson, Paul George David West, Roy Hibbert   2.42  118.27
9   John Wall, Bradley Beal, Trevor Ariza Nene Hilario, Marcin Gortat   2.38  384.03
10   Patrick Beverley, James Harden, Chandler Parsons Donatas Motiejunas, Dwight Howard   2.38  65.58
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7  Discussion
In this paper, we have estimated each NBA player’s effect 
on his team’s chances of winning, after accounting for the 
contributions of his teammate and opponents. By focus-
ing on win probability, our model simultaneously down-
weights the importance of performance in low-leverage 
(“garbage time”) and up-weights the importance of high-
leverage performance, in marked contrast to existing 
measures like PER which provide context-agnostic assess-
ments of player performance. Since our estimates of player 
effects depend fundamentally on the context in which 
players perform, our estimates and derived metrics are 
necessarily retrospective in nature. As a result, our results 
do not display nearly as high of a year-to-year correla-
tion as other metrics. We would argue, however, that the 
somewhat lower year-to-year repeatability of our derived 
metrics are offset by the fact that they provide a much 
more complete accounting of how a player helped their 
teams win in a particular season. When taken together 
with a metric like PER, our results enable us to deter-
mine whether the performance of a player who recorded 
impressive box-score totals actually improved his team’s 
chances of winning the game. Ultimately, our model and 
derived metrics serve as a complement to existing meas-
ures of player performance and enables us to contextual-
ize individual performances in a way that existing metrics 
alone cannot.
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Figure 14: Posterior predictive density in win probability of the 
lineup with the largest impact score matched up with three other 
lineups.

We have introduced a new method for estimating the 
probability that a team wins the game as a function of its 
lead and how much time is remaining. Our win probabil-
ity estimates can be viewed as a middle-ground between 
the empirical estimates, which display extreme disconti-
nuity due to small sample size issues, and existing probit 
regression model estimates, which do not seem to fit the 
empirical observations well. Though our win probabil-
ity estimates are generally quite precise, our choice of 
smoothing window [T – 3, T + 3]  ×  [L – 2, L + 2] is admit-
tedly rather simplistic. This is most pronounced near the 
end of the game, when a single possession can swing the 
outcome and it less reasonable to expect the win probabil-
ity when leading by 2 points is similar to the win prob-
ability when trailing by 2 points. To deal with this, one 
could let the window over which we aggregate games vary 
with both time and lead instead of using a fixed window. 
We also note that the choice of a hard threshold of L  =  ±20 
in determining the number of pseudo-wins, αT,L, and 
pseudo-losses, βT,L, to add is arbitrary and we could just as 
easily have selected L  =  ±25 or ±30. Alternatively, αT,L and 
βT,L could be selected at random from a specified distri-
bution depending on the time and lead or we can place a 
further hyper-prior on (αT,L, βT,L). Unfortunately, estimates 
from the first approach may not be reproducible and 
explicitly computing the Bayes estimator of pT,L, in the 
second approach can be difficult. While a more carefully 
constructed prior can, in principle, lead to estimates that 
more accurately reflect our subjective beliefs about how 
win probability evolves, one must take care not to select a 
prior that can overwhelm the observed data.

Looking at our win probability estimates, we find that 
a unit change in time corresponds to a smaller change in 
win probability than a unit change in lead, especially near 
the end of close games. This can introduce a slight bias 
against players who are frequently substituted into games 
on defensive possessions and taken out of the game on 
offensive possessions, since such players will not be asso-
ciated with large changes in win probability. One way to 
overcome this bias is to account for which team has pos-
session of the ball into our win probability estimates. In 
principle, it would be straightforward to include posses-
sion information into our win probability estimates: first 
we bin the games based on home team lead, time remain-
ing, and which team has possession, and then we apply 
our estimation procedure twice, once for when the home 
team has possession and once for when the away team 
has possession. Our omission of possession information 
is driven largely by our inability to determine which team 
has possession on a second-by-second basis reliably due 
to errors in the order in which plays are recorded in the 
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play-by-play data we have used. In general, more sophis-
ticated estimation of win probability remains an area of 
future exploration.

Since our estimates of player effect are context-
dependent, we have introduced leverage profiles as a 
way to determine which players’ partial effects are most 
directly comparable. Though we have not done so in this 
paper, one could use leverage profiles to cluster players 
based on the situations in which they play. This could 
potentially provide insight into how coaches use various 
players around the league and lead to a more nuanced 
understanding of each player’s role on his team.

In keeping with the spirit of previous player-evalua-
tion, we define two metrics, Impact Ranking and Impact 
Score, to determine a rank-ordering of players. Impact 
Ranking provides an in-team ranking of each player’s 
partial effect, allowing us to determine whether a player’s 
salary is commensurate with his overall contribution to 
his team’s chances of winning games. Impact Score bal-
ances a player’s estimated effect against the uncertainty 
in our estimate to generate a league-wide rank-ordering.

We have found that any individual player’s effect 
on his team’s chances of winning during a single shift is 
small, generally less than 1%. We moreover have found 
rather considerable overlaps in the posterior distribution 
of player partial effects. This suggests there is no single 
player who improves his team’s chances of winning signif-
icantly more than the other players. That said, we are still 
able to distinguish clear differences in players’ impacts. 
Somewhat surprisingly, we find that Dirk Nowitzki had a 
larger impact on his team’s chances of winning that more 
prominent players like Kevin Durant and LeBron James. 
We also found that Durant and James’ impact were virtu-
ally indistinguishable. This is not to suggest that Nowitzki 
is a better or more talented player than Durant or James, 
per se. Rather, it indicates that Nowitzki’s performance 
was much more important to his team’s success than 
Durant’s or James’ performances were to their respective 
teams.

There are several possible extensions and refinements 
to our proposed methodology. As mentioned earlier, our 
win probability estimation is admittedly simplistic and 
designing a more sophisticated procedure is an area 
for future work. It is also possible to include additional 
covariates in equation (2) to entertain two-way or three-
way player interactions, in case there are any on-court 
synergies or mismatches amongst small groups of players. 
In its current form, Equation 2 does not distinguish the 
uncertainty in estimating the yi’s from the inherent vari-
ability in the change in win probability. It may be possible 
to separate these sources of variability by decomposing 

σ, though care must be taken to ensure identifiability of 
the resulting model. Finally, rather than focusing on each 
player’s overall impact, one could scale the predictors 
in Equation 2 by the shift length and re-fit the model to 
estimate each player’s per-minute impact on his team’s 
chances of winning.

Appendix
As we discussed in Section 2, we have made several strong 
assumptions in specifying a Gaussian linear regression 
model. We now check and discuss the assumption that the 
errors in Equation 2 are Gaussian with constant variance. 
We also consider several transformations and alternative 
model specifications which could potentially align with 
these assumptions better than our original specification. 
In particular, we consider the following response vari-
ables, y(1), y(2) and y(3):

–– (1) :iy  our original response, the change in the win 
probability.

–– (2) :iy  the change in the log-odds of winning the game. 
Intuitively, this further down-weights the importance 
of low-leverage performance as a 5% change in win 
probability from 45% to 50% corresponds to a much 
larger change in the log-odds than a 5% change in win 
probability from 90% to 95%.

––
1

(3) 11 exp :
2

i
i

yy
−  += + −    

 the inverse logit transfor-

mation of the shifted and re-scaled change in win 
probability.

Figure  15 shows histograms of these response variables, 
along with a histogram of our original response, change 
in win probability.

We notice that the distribution of y(1) and the distri-
bution of y(3) are similar: both are rather tightly concen-
trated near 0 and 0.622, respectively and are more or less 
symmetric. We also observe that y(3) is much less variable 
than y(1). Interestingly, we see in Figure 15(B), that the 
change in the log-odds of winning is slightly more heavy-
tailed than these other distributions. In particular, we see 
that in about 2% of all shifts, the absolute value of the 
change in the log-odds of winning exceeds 5. These cor-
respond to shifts in which there was a very large swing in 
the home team’s win probability during a given shift. For 
example, in the penultimate shift of the March 16, 2014 
game between the Miami Heat and the Houston Rockets, 
the Heat went from trailing by 5 points with 6:13 left to 
leading by 9 points with a few seconds left. In doing so, 
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the Heat increased their win probability from 22% to 98%, 
corresponding to a change in the log-odds of winning 
of about 5.86. Given the fact that for the vast majority of 
shifts that the change in win probability and the change 
in the log-odds of winning the game were very close to 0 
(indicated by the large “spikes” in the histograms near 0) 
and the fact that we have imposed rather strong shrink-
age on our player effects, we would not expect our model 
to be able to estimate such a large change in the log-odds 
reliably. This is borne out in the residual plot, show in 
Figure  16(B): these shifts had residuals near ±5. To find 
the fitted values in Figure 16, we first simulated 1000 

Figure 15: Histogram of y(1) (A), y(2) (B), and y(3) (C).
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Figure 16: Residuals plotted against fitted variable for the original model, the log-odds model, and the inverse logit model.

posterior draws of the conditional expectation function 
( )[ | , ]i i i iiE y θ τ⋅ = +P T P T� �  using our simulated posterior 

draws of θ and τ and then took the average. It is important 
to note that because of the regularization, the fitted values 
and residuals are biased so we do not expect that they will 
be Gaussian.

We note that Figure 16(A) and (C) are very similar in 
shape, though we note that the residuals in (C) are much 
smaller. This is not particularly surprising, since the vari-
ance of y(3) is much smaller than the variance of y(1). Just like 
we might in a standard least squares regression problem, 
we can form normal quantile plots of these residuals. It is 
important to note, however, that the residuals are not unbi-
ased estimators of the error terms because of the regulariza-
tion. Nevertheless, it may still be desirable to consider an 
alternative model specification in which the distribution of 
the resulting residuals is much closer to Gaussian than our 
original model. Figure 17 shows the resulting normal quan-
tile plots. As anticipated, we see that none of the residual 
plots display the linear trend characteristic of Gaussian dis-
tributions. Interestingly, we also observe that the residuals 
corresponding to y(2) seem decidedly less Gaussian and the 
residuals corresponding to y(3) appear to be similar to our 
original residuals. In light of this, we do not find the sug-
gested transformations particularly compelling, in terms of 
aligning with our original modeling assumptions.

We now consider the issue of homoscedasticity. Once 
again, we note that we are assuming that, conditional on 
the players on the court, the variance of the change in win 
probability is constant. Since we only observe a handful 
of observations with the same 10 players on the court, we 
cannot check this assumption prior to fitting our model. 
Still, it is reasonable to suspect that the variance of yi 
depends on the win probability at the start of the shift. 
Figure 18 shows box plots of the change in win probabil-
ity binned according to the starting win probability of the 
shift, along with the standard deviation of the observa-
tions in each binned.
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We see immediately that the binned standard devia-
tions are not constant, indicating that the variance of y(1) 
does depend on the starting win probability. However, we 
see that this dependence really only manifests itself when 
the starting win probability is close to 0 or 1. It is worth 
mentioning that this dependence in and of itself does 
not invalidate our initial assumption that the variance 
of y(1) conditional on the players on the court is constant. 
However, it does suggest that we try re-weighting the 
response and predictors in Equation 2 so that the binned 
standard deviations of the re-weighted response are con-
stant. This is similar to what we might do in a weighted 
least squares regression problem. We consider three re-
weighting schemes:
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Figure 17: Normal quantile plots of residuals from modeling y(1) (A), y(2) (B), y(3) (C).

1.0

0.5

0

C
ha

ng
e 

in
 w

in
 p

ro
ba

bi
lit

y

–0.5

–1.0

0–0.05 0.15–0.2 0.45–0.5 0.75–0.80.3–0.35 0.6–0.65

Starting win probability
0.9–0.95

Figure 18: Change in win probability binned according to the start-
ing win probability of the shift. Since win probability is constrained 
to the interval [0,1], as the win probability at start of the shift 
increases, the distribution of the change in win probability shifts 
from right-skewed to left-skewed.

3

2

1

0

D
en

si
ty

15

0.4A

B

C

0.3

0.2

0.1

0

10

5

0

D
en

si
ty

D
en

si
ty

y 
(6)

y 
(5)

y 
(4)

–20 –15 –10 –5 0 5 10

–2

–0.6 –0.4 –0.2 0 0.2

–1 0 1

Figure 19: Histograms for y(4), y(5), and y(6).

–– Re-scale so that the binned standard deviations are 
all 1. This magnifies the response and predictors for 
all shifts. Denote the new response variable y(4).

–– Re-scale so that the binned standard deviations are 
all 0.03. This shrinks the response and predictors for 
all high-leverage shifts but leaves the observations 
from low-leverage shifts relatively unchanged. Denote 
the new response variable y(5).

–– Re-scale so that the binned standard deviations are 
all 0.12. This magnifies the response and predictors 
for all low-leverage shifts but leaves the observa-
tions from high-leverage shifts relatively unchanged. 
Denote the re-scaled response variable y(6).
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Figure  19 shows histograms of the three re-scaled 
responses and Figure  20 show the residuals that arise 
from fitting the three re-scaled models. Though it is not 
immediately apparent in Figure 20, we observe rather 
extreme values of y(4) like –22.62, mainly corresponding to 
late-game shifts during which the win probability changed 
dramatically. We find that y(5) and y(6) are somewhat more 
tightly concentrated near 0 than is y(1).

Figure 20 plots the residuals against the fitted values 
from the re-scaled models. Once again, these residu-
als are biased, so we do not expect them to resemble 
the residuals plots obtained in standard least squares 
regression problems. The noticeable negative trend, seen 
especially in Figure 20(A) and (C), is a good indication 
of the bias introduced by regularization. It is interest-
ing that this bias is much more apparent after re-scaling 
the response and predictors than it was in our original 
model.

Somewhat worryingly, we see that there is consider-
able variation in the residuals when the fitted value is 
near zero. This is in marked contrast to Figure 16(A), in 
which we see more or less constant variation in the residu-
als for all possible fitted values. It appears that correcting 
for potential heteroscedasticity results in residuals that 
are even less well-behaved than in our original model. As 
a result, we do not see any of the re-weighted models as 
being necessarily better than our original model.
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